Y x прямая

Y x прямая

Прямая пропорциональность является частным случаем линейной функции $y=kx+b$ при $b=0$. Число $k$ называется коэффициентом пропорциональности.

Примером прямой пропорциональности может служить второй закон Ньютона: Ускорение тела прямо пропорционально приложенной к нему силе:

\[F=ma\]

Здесь масса — коэффициент пропорциональности.

Исследование функции прямой пропорциональности $f(x)=kx$ и её график

Вначале рассмотрим функцию $f\left(x\right)=kx$, где $k > 0$.

  1. Область определения — все числа.
  2. Область значения — все числа.
  3. $f\left(-x\right)=-kx=-f(x)$. Функция прямой пропорциональности нечетна.
  4. Функция проходит через начало координат.
  5. $f’\left(x\right)={\left(kx\right)}’=k>0$. Следовательно, данная функция возрастает на всей области определения. Точек экстремума нет.
  6. $f^{»}\left(x\right)=k’=0$. Следовательно, функция не имеет точек перегиба.
  7. ${\mathop{lim}_{x\to -\infty } kx\ }=-\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=+\infty $
  8. График (рис. 1).

Прямая пропорциональность и её график

Рис. 1. График функции $y=kx$, при $k>0$

Теперь рассмотрим функцию $f\left(x\right)=kx$, где $k

  1. Область определения — все числа.
  2. Область значения — все числа.
  3. $f\left(-x\right)=-kx=-f(x)$. Функция прямой пропорциональности нечетна.
  4. Функция проходит через начало координат.
  5. $f’\left(x\right)={\left(kx\right)}’=k
  6. $f^{»}\left(x\right)=k’=0$. Следовательно, функция не имеет точек перегиба.
  7. ${\mathop{lim}_{x\to -\infty } kx\ }=+\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=-\infty $
  8. График (рис. 2).

Прямая пропорциональность и её график

Рис. 2. График функции $y=kx$, при $k

Важно: для построения графика функции $y=kx$ достаточно найти одну, отличную от начала координат точку $\left(x_0,\ y_0\right)$ и провести прямую через эту точку и начало координат.

Задачи на построение графиков функции прямой пропорциональности



Источник: spravochnick.ru


Добавить комментарий